See Ramanujan conjecture in All languages combined, or Wiktionary
{ "etymology_text": "Named after Srinivasa Ramanujan.", "forms": [ { "form": "the Ramanujan conjecture", "tags": [ "canonical" ] } ], "head_templates": [ { "args": { "def": "1" }, "expansion": "the Ramanujan conjecture", "name": "en-prop" } ], "lang": "English", "lang_code": "en", "pos": "name", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "glosses": [ "A conjecture stating that the Ramanujan tau function given by the Fourier coefficients τ(n) of the cusp form Δ(z) of weight 12 Δ(z)=∑_(n>0)τ(n)qⁿ=q∏_(n>0)(1-qⁿ)²⁴=q-24q²+252q³-1472q⁴+4830q⁵-⋯, where q=e^(2πiz), satisfies |τ(p)|≤2p^(11/2), when p is a prime number." ], "id": "en-Ramanujan_conjecture-en-name-Tw5y8u4K", "links": [ [ "mathematics", "mathematics" ], [ "Ramanujan tau function", "Ramanujan tau function" ], [ "Fourier coefficient", "Fourier coefficient" ], [ "cusp form", "cusp form" ], [ "prime number", "prime number" ] ], "raw_glosses": [ "(mathematics) A conjecture stating that the Ramanujan tau function given by the Fourier coefficients τ(n) of the cusp form Δ(z) of weight 12 Δ(z)=∑_(n>0)τ(n)qⁿ=q∏_(n>0)(1-qⁿ)²⁴=q-24q²+252q³-1472q⁴+4830q⁵-⋯, where q=e^(2πiz), satisfies |τ(p)|≤2p^(11/2), when p is a prime number." ], "related": [ { "word": "Ramanujan-Petersson conjecture" } ], "topics": [ "mathematics", "sciences" ], "wikipedia": [ "Srinivasa Ramanujan" ] } ], "word": "Ramanujan conjecture" }
{ "etymology_text": "Named after Srinivasa Ramanujan.", "forms": [ { "form": "the Ramanujan conjecture", "tags": [ "canonical" ] } ], "head_templates": [ { "args": { "def": "1" }, "expansion": "the Ramanujan conjecture", "name": "en-prop" } ], "lang": "English", "lang_code": "en", "pos": "name", "related": [ { "word": "Ramanujan-Petersson conjecture" } ], "senses": [ { "categories": [ "English entries with incorrect language header", "English eponyms", "English lemmas", "English multiword terms", "English proper nouns", "English uncountable nouns", "Pages with 1 entry", "Pages with entries", "en:Mathematics" ], "glosses": [ "A conjecture stating that the Ramanujan tau function given by the Fourier coefficients τ(n) of the cusp form Δ(z) of weight 12 Δ(z)=∑_(n>0)τ(n)qⁿ=q∏_(n>0)(1-qⁿ)²⁴=q-24q²+252q³-1472q⁴+4830q⁵-⋯, where q=e^(2πiz), satisfies |τ(p)|≤2p^(11/2), when p is a prime number." ], "links": [ [ "mathematics", "mathematics" ], [ "Ramanujan tau function", "Ramanujan tau function" ], [ "Fourier coefficient", "Fourier coefficient" ], [ "cusp form", "cusp form" ], [ "prime number", "prime number" ] ], "raw_glosses": [ "(mathematics) A conjecture stating that the Ramanujan tau function given by the Fourier coefficients τ(n) of the cusp form Δ(z) of weight 12 Δ(z)=∑_(n>0)τ(n)qⁿ=q∏_(n>0)(1-qⁿ)²⁴=q-24q²+252q³-1472q⁴+4830q⁵-⋯, where q=e^(2πiz), satisfies |τ(p)|≤2p^(11/2), when p is a prime number." ], "topics": [ "mathematics", "sciences" ], "wikipedia": [ "Srinivasa Ramanujan" ] } ], "word": "Ramanujan conjecture" }
Download raw JSONL data for Ramanujan conjecture meaning in English (1.5kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-01-06 from the enwiktionary dump dated 2025-01-01 using wiktextract (f889f65 and 8fbd9e8). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.